Abstract:Recent advancements in edge computing have significantly enhanced the AI capabilities of Internet of Things (IoT) devices. However, these advancements introduce new challenges in knowledge exchange and resource management, particularly addressing the spatiotemporal data locality in edge computing environments. This study examines algorithms and methods for deploying distributed machine learning within autonomous, network-capable, AI-enabled edge devices. We focus on determining confidence levels in learning outcomes considering the spatial variability of data encountered by independent agents. Using collaborative mapping as a case study, we explore the application of the Distributed Neural Network Optimization (DiNNO) algorithm extended with Bayesian neural networks (BNNs) for uncertainty estimation. We implement a 3D environment simulation using the Webots platform to simulate collaborative mapping tasks, decouple the DiNNO algorithm into independent processes for asynchronous network communication in distributed learning, and integrate distributed uncertainty estimation using BNNs. Our experiments demonstrate that BNNs can effectively support uncertainty estimation in a distributed learning context, with precise tuning of learning hyperparameters crucial for effective uncertainty assessment. Notably, applying Kullback-Leibler divergence for parameter regularization resulted in a 12-30% reduction in validation loss during distributed BNN training compared to other regularization strategies.
Abstract:Initially considered as low-power units with limited autonomous processing, Edge IoT devices have seen a paradigm shift with the introduction of FPGAs and AI accelerators. This advancement has vastly amplified their computational capabilities, emphasizing the practicality of edge AI. Such progress introduces new challenges of optimizing AI tasks for the limitations of energy and network resources typical in Edge computing environments. Our study explores methods that enable distributed data processing through AI-enabled edge devices, enhancing collaborative learning capabilities. A key focus of our research is the challenge of determining confidence levels in learning outcomes, considering the spatial and temporal variability of data sets encountered by independent agents. To address this issue, we investigate the application of Bayesian neural networks, proposing a novel approach to manage uncertainty in distributed learning environments.
Abstract:Traditionally, IoT edge devices have been perceived primarily as low-power components with limited capabilities for autonomous operations. Yet, with emerging advancements in embedded AI hardware design, a foundational shift paves the way for future possibilities. Thus, the aim of the KDT NEUROKIT2E project is to establish a new open-source framework to further facilitate AI applications on edge devices by developing new methods in quantization, pruning-aware training, and sparsification. These innovations hold the potential to expand the functional range of such devices considerably, enabling them to manage complex Machine Learning (ML) tasks utilizing local resources and laying the groundwork for innovative learning approaches. In the context of 6G's transformative potential, distributed learning among independent agents emerges as a pivotal application, attributed to 6G networks' support for ultra-reliable low-latency communication, enhanced data rates, and advanced edge computing capabilities. Our research focuses on the mechanisms and methodologies that allow edge network-enabled agents to engage in collaborative learning in distributed environments. Particularly, one of the key issues within distributed collaborative learning is determining the degree of confidence in the learning results, considering the spatio-temporal locality of data sets perceived by independent agents.