Abstract:We study the online resource allocation problem in which at each round, a budget $B$ must be allocated across $K$ arms under censored feedback. An arm yields a reward if and only if two conditions are satisfied: (i) the arm is activated according to an arm-specific Bernoulli random variable with unknown parameter, and (ii) the allocated budget exceeds a random threshold drawn from a parametric distribution with unknown parameter. Over $T$ rounds, the learner must jointly estimate the unknown parameters and allocate the budget so as to maximize cumulative reward facing the exploration--exploitation trade-off. We prove an information-theoretic regret lower bound $Ω(T^{1/3})$, demonstrating the intrinsic difficulty of the problem. We then propose RA-UCB, an optimistic algorithm that leverages non-trivial parameter estimation and confidence bounds. When the budget $B$ is known at the beginning of each round, RA-UCB achieves a regret of order $\widetilde{\mathcal{O}}(\sqrt{T})$, and even $\mathcal{O}(\mathrm{poly}\text{-}\log T)$ under stronger assumptions. As for unknown, round dependent budget, we introduce MG-UCB, which allows within-round switching and infinitesimal allocations, and matches the regret guarantees of RA-UCB. We then validate our theoretical results through experiments on real-world datasets.