Abstract:Robot failure is detrimental and disruptive, often requiring human intervention to recover. Maintaining safe operation under impairment to achieve task completion, i.e. fail-active operation, is our target. Focusing on actuation failures, we introduce DEFT, a diffusion-based trajectory generator conditioned on the robot's current embodiment and task constraints. DEFT generalizes across failure types, supports constrained and unconstrained motions, and enables task completion under arbitrary failure. We evaluated DEFT in both simulation and real-world scenarios using a 7-DoF robotic arm. In simulation over thousands of joint-failure cases across multiple tasks, DEFT outperformed the baseline by up to 2 times. On failures unseen during training, it continued to outperform the baseline, indicating robust generalization in simulation. Further, we performed real-world evaluations on two multi-step tasks, drawer manipulation and whiteboard erasing. These experiments demonstrated DEFT succeeding on tasks where classical methods failed. Our results show that DEFT achieves fail-active manipulation across arbitrary failure configurations and real-world deployments.