



Abstract:One of the consequences of passing from mass production to mass customization paradigm in the nowadays industrialized world is the need to increase flexibility and responsiveness of manufacturing companies. The high-mix / low-volume production forces constant accommodations of unknown product variants, which ultimately leads to high periods of machine calibration. The difficulty related with machine calibration is that experience is required together with a set of experiments to meet the final product quality. Unfortunately, all possible combinations of machine parameters is so high that is difficult to build empirical knowledge. Due to this fact, normally trial and error approaches are taken making one-of-a-kind products not viable. Therefore, a Zero-Shot Learning (ZSL) based approach called hyper-process model (HPM) to learn the relation among multiple tasks is used as a way to shorten the calibration phase. Assuming each product variant is a task to solve, first, a shape analysis on data to learn common modes of deformation between tasks is made, and secondly, a mapping between these modes and task descriptions is performed. Ultimately, the present work has two main contributions: 1) Formulation of an industrial problem into a ZSL setting where new process models can be generated for process optimization and 2) the definition of a regression problem in the domain of ZSL. For that purpose, a 2-d deep drawing simulated process was used based on data collected from the Abaqus simulator, where a significant number of process models were collected to test the effectiveness of the approach. The obtained results show that is possible to learn new tasks without any available data (both labeled and unlabeled) by leveraging information about already existing tasks, allowing to speed up the calibration phase and make a quicker integration of new products into manufacturing systems.




Abstract:Zero-shot learning (ZSL) can be defined by correctly solving a task where no training data is available, based on previous acquired knowledge from different, but related tasks. So far, this area has mostly drawn the attention from computer vision community where a new unseen image needs to be correctly classified, assuming the target class was not used in the training procedure. Apart from image classification, only a couple of generic methods were proposed that are applicable to both classification and regression. These learn the relation among model coefficients so new ones can be predicted according to provided conditions. So far, up to our knowledge, no methods exist that are applicable only to regression, and take advantage from such setting. Therefore, the present work proposes a novel algorithm for regression problems that uses data drawn from trained models, instead of model coefficients. In this case, a shape analyses on the data is performed to create a statistical shape model and generate new shapes to train new models. The proposed algorithm is tested in a theoretical setting using the beta distribution where main problem to solve is to estimate a function that predicts curves, based on already learned different, but related ones.