Abstract:We introduce conditional unigram tokenization, a novel approach that extends unigram tokenization by conditioning target token probabilities on source-language tokens from parallel data. Given a fixed source tokenizer, our method learns a target tokenizer that maximizes cross-lingual semantic alignment. We evaluate our tokenizer on four language pairs across different families and resource levels, examining intrinsic properties and downstream performance on machine translation and language modeling. While our conditional tokenizer maintains comparable statistical properties to standard unigram tokenizers, results are mixed: we observe no improvements in machine translation quality, but find consistent perplexity reductions in language modeling. We hypothesize that quadratic scaling of conditional probability estimation with respect to the vocabulary size creates a data efficiency bottleneck. Our findings suggest that alternative parameterizations may be necessary for practical cross-lingual tokenization.
Abstract:Etruscan is an ancient language spoken in Italy from the 7th century BC to the 1st century AD. There are no native speakers of the language at the present day, and its resources are scarce, as there exist only around 12,000 known inscriptions. To the best of our knowledge, there are no publicly available Etruscan corpora for natural language processing. Therefore, we propose a dataset for machine translation from Etruscan to English, which contains 2891 translated examples from existing academic sources. Some examples are extracted manually, while others are acquired in an automatic way. Along with the dataset, we benchmark different machine translation models observing that it is possible to achieve a BLEU score of 10.1 with a small transformer model. Releasing the dataset can help enable future research on this language, similar languages or other languages with scarce resources.