Abstract:Hand gesture understanding is essential for several applications in human-computer interaction, including automatic clinical assessment of hand dexterity. While deep learning has advanced static gesture recognition, dynamic gesture understanding remains challenging due to complex spatiotemporal variations. Moreover, existing datasets often lack multimodal and multi-view diversity, precise ground-truth tracking, and an action quality component embedded within gestures. This paper introduces EHWGesture, a multimodal video dataset for gesture understanding featuring five clinically relevant gestures. It includes over 1,100 recordings (6 hours), captured from 25 healthy subjects using two high-resolution RGB-Depth cameras and an event camera. A motion capture system provides precise ground-truth hand landmark tracking, and all devices are spatially calibrated and synchronized to ensure cross-modal alignment. Moreover, to embed an action quality task within gesture understanding, collected recordings are organized in classes of execution speed that mirror clinical evaluations of hand dexterity. Baseline experiments highlight the dataset's potential for gesture classification, gesture trigger detection, and action quality assessment. Thus, EHWGesture can serve as a comprehensive benchmark for advancing multimodal clinical gesture understanding.
Abstract:Accurate 3D tracking of hand and fingers movements poses significant challenges in computer vision. The potential applications span across multiple domains, including human-computer interaction, virtual reality, industry, and medicine. While gesture recognition has achieved remarkable accuracy, quantifying fine movements remains a hurdle, particularly in clinical applications where the assessment of hand dysfunctions and rehabilitation training outcomes necessitate precise measurements. Several novel and lightweight frameworks based on Deep Learning have emerged to address this issue; however, their performance in accurately and reliably measuring fingers movements requires validation against well-established gold standard systems. In this paper, the aim is to validate the handtracking framework implemented by Google MediaPipe Hand (GMH) and an innovative enhanced version, GMH-D, that exploits the depth estimation of an RGB-Depth camera to achieve more accurate tracking of 3D movements. Three dynamic exercises commonly administered by clinicians to assess hand dysfunctions, namely Hand Opening-Closing, Single Finger Tapping and Multiple Finger Tapping are considered. Results demonstrate high temporal and spectral consistency of both frameworks with the gold standard. However, the enhanced GMH-D framework exhibits superior accuracy in spatial measurements compared to the baseline GMH, for both slow and fast movements. Overall, our study contributes to the advancement of hand tracking technology, the establishment of a validation procedure as a good-practice to prove efficacy of deep-learning-based hand-tracking, and proves the effectiveness of GMH-D as a reliable framework for assessing 3D hand movements in clinical applications.