Abstract:How do we enable artificial intelligence models to improve themselves? This is central to exponentially improving generalized artificial intelligence models, which can improve their own architecture to handle new problem domains in an efficient manner that leverages the latest hardware. However, current automated compilation methods are poor, and efficient algorithms require years of human development. In this paper, we use neural circuit diagrams, based in category theory, to prove a general theorem related to deep learning algorithms, guide the development of a novel attention algorithm catered to the domain of gene regulatory networks, and produce a corresponding efficient kernel. The algorithm we propose, spherical attention, shows that neural circuit diagrams enable a principled and systematic method for reasoning about deep learning architectures and providing high-performance code. By replacing SoftMax with an $L^2$ norm as suggested by diagrams, it overcomes the special function unit bottleneck of standard attention while retaining the streaming property essential to high-performance. Our diagrammatically derived \textit{FlashSign} kernel achieves comparable performance to the state-of-the-art, fine-tuned FlashAttention algorithm on an A100, and $3.6\times$ the performance of PyTorch. Overall, this investigation shows neural circuit diagrams' suitability as a high-level framework for the automated development of efficient, novel artificial intelligence architectures.
Abstract:We present the first unsupervised deep learning method for pollen analysis using bright-field microscopy. Using a modest dataset of 650 images of pollen grains collected from honey, we achieve family level identification of pollen. We embed images of pollen grains into a low-dimensional latent space and compare Euclidean and Riemannian metrics on these spaces for clustering. We propose this system for automated analysis of pollen and other microscopic biological structures which have only small or unlabelled datasets available.
Abstract:Honey has been collected and used by humankind as both a food and medicine for thousands of years. However, in the modern economy, honey has become subject to mislabelling and adulteration making it the third most faked food product in the world. The international scale of fraudulent honey has had both economic and environmental ramifications. In this paper, we propose a novel method of identifying fraudulent honey using machine learning augmented microscopy.