Abstract:Pronunciation instruction in foreign language classrooms has often been an overlooked area of focus. With the widespread adoption of Artificial Intelligence (AI) and its potential benefits, investigating how AI is utilized in pronunciation teaching and understanding the beliefs of teachers about this tool is essential for improving learning outcomes. This study aims to examine how AI use for pronunciation instruction varies across different demographic and professional factors among teachers, and how these factors, including AI use, influence the beliefs of teachers about AI. The study involved 117 English as a Foreign Language (EFL) in-service teachers working in Cyprus, who completed an online survey designed to assess their beliefs about the effectiveness of AI, its drawbacks, and their willingness to integrate AI into their teaching practices. The results revealed that teachers were significantly more likely to agree on the perceived effectiveness of AI and their willingness to adopt it, compared to their concerns about its use. Furthermore, teachers working in higher education and adult education, as well as those who had received more extensive training, reported using AI more frequently in their teaching. Teachers who utilized AI more often expressed stronger agreement with its effectiveness, while those who had received more training were less likely to express concerns about its integration. Given the limited training that many teachers currently receive, these findings demonstrate the need for tailored training sessions that address the specific needs and concerns of educators, ultimately fostering the adoption of AI in pronunciation instruction.
Abstract:One ongoing debate in linguistics is whether Artificial Intelligence (AI) can effectively mimic human performance in language-related tasks. While much research has focused on various linguistic abilities of AI, little attention has been given to how it defines neologisms formed through different word formation processes. This study addresses this gap by examining the degree of agreement between human and AI-generated responses in defining three types of Greek neologisms: blends, compounds, and derivatives. The study employed an online experiment in which human participants selected the most appropriate definitions for neologisms, while ChatGPT received identical prompts. The results revealed fair agreement between human and AI responses for blends and derivatives but no agreement for compounds. However, when considering the majority response among humans, agreement with AI was high for blends and derivatives. These findings highlight the complexity of human language and the challenges AI still faces in capturing its nuances. In particular, they suggest a need for integrating more advanced semantic networks and contextual learning mechanisms into AI models to improve their interpretation of complex word formations, especially compounds.
Abstract:While extensive research has focused on ChatGPT in recent years, very few studies have systematically quantified and compared linguistic features between human-written and Artificial Intelligence (AI)-generated language. This study aims to investigate how various linguistic components are represented in both types of texts, assessing the ability of AI to emulate human writing. Using human-authored essays as a benchmark, we prompted ChatGPT to generate essays of equivalent length. These texts were analyzed using Open Brain AI, an online computational tool, to extract measures of phonological, morphological, syntactic, and lexical constituents. Despite AI-generated texts appearing to mimic human speech, the results revealed significant differences across multiple linguistic features such as consonants, word stress, nouns, verbs, pronouns, direct objects, prepositional modifiers, and use of difficult words among others. These findings underscore the importance of integrating automated tools for efficient language assessment, reducing time and effort in data analysis. Moreover, they emphasize the necessity for enhanced training methodologies to improve the capacity of AI for producing more human-like text.
Abstract:Children with developmental language disorder (DLD) encounter difficulties in acquiring various language structures. Early identification and intervention are crucial to prevent negative long-term outcomes impacting the academic, social, and emotional development of children. The study aims to develop an automated method for the identification of DLD using artificial intelligence, specifically a neural network machine learning algorithm. This protocol is applied for the first time in Cypriot Greek children, which is generally considered underresearched in the context of DLD. The neural network model was trained using perceptual and production data elicited from children with DLD and healthy controls. The k-fold technique was used to crossvalidate the algorithm. The performance of the model was evaluated using metrics such as accuracy, precision, recall, F1 score, and ROC/AUC curve to assess its ability to make accurate predictions on a set of unseen data. The results demonstrated high classification values for all metrics (between 0.92 and 0.98), indicating the high accuracy of the neural model in classifying children with DLD. Additionally, the variable importance analysis revealed that the language production skills of children had a more significant impact on the performance of the model compared to perception skills. Neural networks represent powerful tools for detecting DLD, providing early and quick assessments of the disorder, and having the potential to improve clinical outcomes.