Abstract:In spite of their prevalence, the behaviour of Neural Networks when extrapolating far from the training distribution remains poorly understood, with existing results limited to specific cases. In this work, we prove general results -- the first of their kind -- by applying Neural Tangent Kernel (NTK) theory to analyse infinitely-wide neural networks trained until convergence and prove that the inclusion of just one Layer Norm (LN) fundamentally alters the induced NTK, transforming it into a bounded-variance kernel. As a result, the output of an infinitely wide network with at least one LN remains bounded, even on inputs far from the training data. In contrast, we show that a broad class of networks without LN can produce pathologically large outputs for certain inputs. We support these theoretical findings with empirical experiments on finite-width networks, demonstrating that while standard NNs often exhibit uncontrolled growth outside the training domain, a single LN layer effectively mitigates this instability. Finally, we explore real-world implications of this extrapolatory stability, including applications to predicting residue sizes in proteins larger than those seen during training and estimating age from facial images of underrepresented ethnicities absent from the training set.
Abstract:While Bayesian inference provides a principled framework for reasoning under uncertainty, its widespread adoption is limited by the intractability of exact posterior computation, necessitating the use of approximate inference. However, existing methods are often computationally expensive, or demand costly retraining when priors change, limiting their utility, particularly in sequential inference problems such as real-time sensor fusion. To address these challenges, we introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings. Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset -- thus performing approximate Bayesian inference. Our novel architecture represents a prior distribution as a (universally-approximating) Gaussian Mixture Model (GMM), and transforms it into a GMM representation of the posterior. The components of the GMM attend to each other via self-attention, and to the datapoints via cross-attention. We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces computation times-from minutes to milliseconds-while achieving log-likelihood performance on par with or superior to existing approximate inference methods across tasks such as sequential inference, quantum system parameter inference, and Gaussian Process predictive posterior inference with hyperpriors.