Abstract:Symbolic Regression (SR) is a powerful technique for discovering interpretable mathematical expressions. However, benchmarking SR methods remains challenging due to the diversity of algorithms, datasets, and evaluation criteria. In this work, we present an updated version of SRBench. Our benchmark expands the previous one by nearly doubling the number of evaluated methods, refining evaluation metrics, and using improved visualizations of the results to understand the performances. Additionally, we analyze trade-offs between model complexity, accuracy, and energy consumption. Our results show that no single algorithm dominates across all datasets. We propose a call for action from SR community in maintaining and evolving SRBench as a living benchmark that reflects the state-of-the-art in symbolic regression, by standardizing hyperparameter tuning, execution constraints, and computational resource allocation. We also propose deprecation criteria to maintain the benchmark's relevance and discuss best practices for improving SR algorithms, such as adaptive hyperparameter tuning and energy-efficient implementations.
Abstract:In this paper, we present a machine learning method for the discovery of analytic solutions to differential equations. The method utilizes an inherently interpretable algorithm, genetic programming based symbolic regression. Unlike conventional accuracy measures in machine learning we demonstrate the ability to recover true analytic solutions, as opposed to a numerical approximation. The method is verified by assessing its ability to recover known analytic solutions for two separate differential equations. The developed method is compared to a conventional, purely data-driven genetic programming based symbolic regression algorithm. The reliability of successful evolution of the true solution, or an algebraic equivalent, is demonstrated.