Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
Abstract:Triplet loss function is one of the options that can significantly improve the accuracy of the One-shot Learning tasks. Starting from 2015, many projects use Siamese networks and this kind of loss for face recognition and object classification. In our research, we focused on two tasks related to vegetation. The first one is plant disease detection on 25 classes of five crops (grape, cotton, wheat, cucumbers, and corn). This task is motivated because harvest losses due to diseases is a serious problem for both large farming structures and rural families. The second task is the identification of moss species (5 classes). Mosses are natural bioaccumulators of pollutants; therefore, they are used in environmental monitoring programs. The identification of moss species is an important step in the sample preprocessing. In both tasks, we used self-collected image databases. We tried several deep learning architectures and approaches. Our Siamese network architecture with a triplet loss function and MobileNetV2 as a base network showed the most impressive results in both above-mentioned tasks. The average accuracy for plant disease detection amounted to over 97.8% and 97.6% for moss species classification.
Abstract:One of the most important problems of data processing in high energy and nuclear physics is the event reconstruction. Its main part is the track reconstruction procedure which consists in looking for all tracks that elementary particles leave when they pass through a detector among a huge number of points, so-called hits, produced when flying particles fire detector coordinate planes. Unfortunately, the tracking is seriously impeded by the famous shortcoming of multiwired, strip in GEM detectors due to the appearance in them a lot of fake hits caused by extra spurious crossings of fired strips. Since the number of those fakes is several orders of magnitude greater than for true hits, one faces with the quite serious difficulty to unravel possible track-candidates via true hits ignoring fakes. On the basis of our previous two-stage approach based on hits preprocessing using directed K-d tree search followed by a deep neural classifier we introduce here two new tracking algorithms. Both algorithms combine those two stages in one while using different types of deep neural nets. We show that both proposed deep networks do not require any special preprocessing stage, are more accurate, faster and can be easier parallelized. Preliminary results of our new approaches for simulated events are presented.
Abstract:One of the most important problems of data processing in high energy and nuclear physics is the event reconstruction. Its main part is the track reconstruction procedure which consists in looking for all tracks that elementary particles leave when they pass through a detector among a huge number of points, so-called hits, produced when flying particles fire detector coordinate planes. Unfortunately, the tracking is seriously impeded by the famous shortcoming of multiwired, strip and GEM detectors due to appearance in them a lot of fake hits caused by extra spurious crossings of fired strips. Since the number of those fakes is several orders of magnitude greater than for true hits, one faces with the quite serious difficulty to unravel possible track-candidates via true hits ignoring fakes. We introduce a renewed method that is a significant improvement of our previous two-stage approach based on hit preprocessing using directed K-d tree search followed a deep neural classifier. We combine these two stages in one by applying recurrent neural network that simultaneously determines whether a set of points belongs to a true track or not and predicts where to look for the next point of track on the next coordinate plane of the detector. We show that proposed deep network is more accurate, faster and does not require any special preprocessing stage. Preliminary results of our approach for simulated events of the BM@N GEM detector are presented.