



Abstract:Reordering is a challenge to machine translation (MT) systems. In MT, the widely used approach is to apply word based language model (LM) which considers the constituent units of a sentence as words. In speech recognition (SR), some phrase based LM have been proposed. However, those LMs are not necessarily suitable or optimal for reordering. We propose two phrase based LMs which considers the constituent units of a sentence as phrases. Experiments show that our phrase based LMs outperform the word based LM with the respect of perplexity and n-best list re-ranking.




Abstract:We consider phrase based Language Models (LM), which generalize the commonly used word level models. Similar concept on phrase based LMs appears in speech recognition, which is rather specialized and thus less suitable for machine translation (MT). In contrast to the dependency LM, we first introduce the exhaustive phrase-based LMs tailored for MT use. Preliminary experimental results show that our approach outperform word based LMs with the respect to perplexity and translation quality.