Abstract:Reliable classification of Earth Observation data depends on consistent, up-to-date reference labels. However, collecting new labelled data at each time step remains expensive and logistically difficult, especially in dynamic or remote ecological systems. As a response to this challenge, we demonstrate that a model with access to reference data solely from time step t0 can perform competitively on both t0 and a future time step t1, outperforming models trained separately on time-specific reference data (the gold standard). This finding suggests that effective temporal generalization can be achieved without requiring manual updates to reference labels beyond the initial time step t0. Drawing on concepts from change detection and semi-supervised learning (SSL), the most performant approach, "Common Ground", uses a semi-supervised framework that leverages temporally stable regions-areas with little to no change in spectral or semantic characteristics between time steps-as a source of implicit supervision for dynamic regions. We evaluate this strategy across multiple classifiers, sensors (Landsat-8, Sentinel-2 satellite multispectral and airborne imaging spectroscopy), and ecological use cases. For invasive tree species mapping, we observed a 21-40% improvement in classification accuracy using Common Ground compared to naive temporal transfer, where models trained at a single time step are directly applied to a future time step. We also observe a 10 -16% higher accuracy for the introduced approach compared to a gold-standard approach. In contrast, when broad land cover categories were mapped across Europe, we observed a more modest 2% increase in accuracy compared to both the naive and gold-standard approaches. These results underscore the effectiveness of combining stable reference screening with SSL for scalable and label-efficient multi-temporal remote sensing classification.
Abstract:Unreliable predictions can occur when using artificial intelligence (AI) systems with negative consequences for downstream applications, particularly when employed for decision-making. Conformal prediction provides a model-agnostic framework for uncertainty quantification that can be applied to any dataset, irrespective of its distribution, post hoc. In contrast to other pixel-level uncertainty quantification methods, conformal prediction operates without requiring access to the underlying model and training dataset, concurrently offering statistically valid and informative prediction regions, all while maintaining computational efficiency. In response to the increased need to report uncertainty alongside point predictions, we bring attention to the promise of conformal prediction within the domain of Earth Observation (EO) applications. To accomplish this, we assess the current state of uncertainty quantification in the EO domain and found that only 20% of the reviewed Google Earth Engine (GEE) datasets incorporated a degree of uncertainty information, with unreliable methods prevalent. Next, we introduce modules that seamlessly integrate into existing GEE predictive modelling workflows and demonstrate the application of these tools for datasets spanning local to global scales, including the Dynamic World and Global Ecosystem Dynamics Investigation (GEDI) datasets. These case studies encompass regression and classification tasks, featuring both traditional and deep learning-based workflows. Subsequently, we discuss the opportunities arising from the use of conformal prediction in EO. We anticipate that the increased availability of easy-to-use implementations of conformal predictors, such as those provided here, will drive wider adoption of rigorous uncertainty quantification in EO, thereby enhancing the reliability of uses such as operational monitoring and decision making.