LAMA, IMT
Abstract:We study the problem of multi-class classification under system-level constraints expressible as linear functionals over randomized classifiers. We propose a post-processing approach that adjusts a given base classifier to satisfy general constraints without retraining. Our method formulates the problem as a linearly constrained stochastic program over randomized classifiers, and leverages entropic regularization and dual optimization techniques to construct a feasible solution. We provide finite-sample guarantees for the risk and constraint satisfaction for the final output of our algorithm under minimal assumptions. The framework accommodates a broad class of constraints, including fairness, abstention, and churn requirements.




Abstract:We address the problem of performing regression while ensuring demographic parity, even without access to sensitive attributes during inference. We present a general-purpose post-processing algorithm that, using accurate estimates of the regression function and a sensitive attribute predictor, generates predictions that meet the demographic parity constraint. Our method involves discretization and stochastic minimization of a smooth convex function. It is suitable for online post-processing and multi-class classification tasks only involving unlabeled data for the post-processing. Unlike prior methods, our approach is fully theory-driven. We require precise control over the gradient norm of the convex function, and thus, we rely on more advanced techniques than standard stochastic gradient descent. Our algorithm is backed by finite-sample analysis and post-processing bounds, with experimental results validating our theoretical findings.