Abstract:Large Language Models (LLMs) have demonstrated exceptional performance in general knowledge and reasoning tasks across various domains. However, their effectiveness in specialized scientific fields like Chemical and Biological Engineering (CBE) remains underexplored. Addressing this gap requires robust evaluation benchmarks that assess both knowledge and reasoning capabilities in these niche areas, which are currently lacking. To bridge this divide, we present a comprehensive empirical analysis of LLM reasoning capabilities in CBE, with a focus on Ionic Liquids (ILs) for carbon sequestration - an emerging solution for mitigating global warming. We develop and release an expert - curated dataset of 5,920 examples designed to benchmark LLMs' reasoning in this domain. The dataset incorporates varying levels of difficulty, balancing linguistic complexity and domain-specific knowledge. Using this dataset, we evaluate three open-source LLMs with fewer than 10 billion parameters. Our findings reveal that while smaller general-purpose LLMs exhibit basic knowledge of ILs, they lack the specialized reasoning skills necessary for advanced applications. Building on these results, we discuss strategies to enhance the utility of LLMs for carbon capture research, particularly using ILs. Given the significant carbon footprint of LLMs, aligning their development with IL research presents a unique opportunity to foster mutual progress in both fields and advance global efforts toward achieving carbon neutrality by 2050.
Abstract:Although Large Language Models (LLMs) have achieved remarkable performance in diverse general knowledge and reasoning tasks, their utility in the scientific domain of Chemical and Biological Engineering (CBE) is unclear. Hence, it necessitates challenging evaluation benchmarks that can measure LLM performance in knowledge- and reasoning-based tasks, which is lacking. As a foundational step, we empirically measure the reasoning capabilities of LLMs in CBE. We construct and share an expert-curated dataset of 5,920 examples for benchmarking LLMs' reasoning capabilities in the niche domain of Ionic Liquids (ILs) for carbon sequestration, an emergent solution to reducing global warming. The dataset presents different difficulty levels by varying along the dimensions of linguistic and domain-specific knowledge. Benchmarking three less than 10B parameter open-source LLMs on the dataset suggests that while smaller general-purpose LLMs are knowledgeable about ILs, they lack domain-specific reasoning capabilities. Based on our results, we further discuss considerations for leveraging LLMs for carbon capture research using ILs. Since LLMs have a high carbon footprint, gearing them for IL research can symbiotically benefit both fields and help reach the ambitious carbon neutrality target by 2050. Dataset link: https://github.com/sougata-ub/llms_for_ionic_liquids