Abstract:We introduce a novel approximation to the same marginal Schr\"{o}dinger bridge using the Langevin diffusion. As $\varepsilon \downarrow 0$, it is known that the barycentric projection (also known as the entropic Brenier map) of the Schr\"{o}dinger bridge converges to the Brenier map, which is the identity. Our diffusion approximation is leveraged to show that, under suitable assumptions, the difference between the two is $\varepsilon$ times the gradient of the marginal log density (i.e., the score function), in $\mathbf{L}^2$. More generally, we show that the family of Markov operators, indexed by $\varepsilon > 0$, derived from integrating test functions against the conditional density of the static Schr\"{o}dinger bridge at temperature $\varepsilon$, admits a derivative at $\varepsilon=0$ given by the generator of the Langevin semigroup. Hence, these operators satisfy an approximate semigroup property at low temperatures.
Abstract:We introduce a novel discretization scheme for Wasserstein gradient flows that involves successively computing Schr\"{o}dinger bridges with the same marginals. This is different from both the forward/geodesic approximation and the backward/Jordan-Kinderlehrer-Otto (JKO) approximations. The proposed scheme has two advantages: one, it avoids the use of the score function, and, two, it is amenable to particle-based approximations using the Sinkhorn algorithm. Our proof hinges upon showing that relative entropy between the Schr\"{o}dinger bridge with the same marginals at temperature $\epsilon$ and the joint distribution of a stationary Langevin diffusion at times zero and $\epsilon$ is of the order $o(\epsilon^2)$ with an explicit dependence given by Fisher information. Owing to this inequality, we can show, using a triangular approximation argument, that the interpolated iterated application of the Schr\"{o}dinger bridge approximation converge to the Wasserstein gradient flow, for a class of gradient flows, including the heat flow. The results also provide a probabilistic and rigorous framework for the convergence of the self-attention mechanisms in transformer networks to the solutions of heat flows, first observed in the inspiring work SABP22 in machine learning research.