Abstract:We present a machine-learning guided approach to predict saturation magnetization (MS) and coercivity (HC) in Fe-rich soft magnetic alloys, particularly Fe-Si-B systems. ML models trained on experimental data reveals that increasing Si and B content reduces MS from 1.81T (DFT~2.04 T) to ~1.54 T (DFT~1.56T) in Fe-Si-B, which is attributed to decreased magnetic density and structural modifications. Experimental validation of ML predicted magnetic saturation on Fe-1Si-1B (2.09T), Fe-5Si-5B (2.01T) and Fe-10Si-10B (1.54T) alloy compositions further support our findings. These trends are consistent with density functional theory (DFT) predictions, which link increased electronic disorder and band broadening to lower MS values. Experimental validation on selected alloys confirms the predictive accuracy of the ML model, with good agreement across compositions. Beyond predictive accuracy, detailed uncertainty quantification and model interpretability including through feature importance and partial dependence analysis reveals that MS is governed by a nonlinear interplay between Fe content, early transition metal ratios, and annealing temperature, while HC is more sensitive to processing conditions such as ribbon thickness and thermal treatment windows. The ML framework was further applied to Fe-Si-B/Cr/Cu/Zr/Nb alloys in a pseudo-quaternary compositional space, which shows comparable magnetic properties to NANOMET (Fe84.8Si0.5B9.4Cu0.8 P3.5C1), FINEMET (Fe73.5Si13.5B9 Cu1Nb3), NANOPERM (Fe88Zr7B4Cu1), and HITPERM (Fe44Co44Zr7B4Cu1. Our fundings demonstrate the potential of ML framework for accelerated search of high-performance, Co- and Ni-free, soft magnetic materials.
Abstract:The transition to a low-carbon economy demands efficient and sustainable energy-storage solutions, with hydrogen emerging as a promising clean-energy carrier and with metal hydrides recognized for their hydrogen-storage capacity. Here, we leverage machine learning (ML) to predict hydrogen-to-metal (H/M) ratios and solution energy by incorporating thermodynamic parameters and local lattice distortion (LLD) as key features. Our best-performing ML model provides improvements to H/M ratios and solution energies over a broad class of ternary alloys (easily extendable to multi-principal-element alloys), such as Ti-Nb-X (X = Mo, Cr, Hf, Ta, V, Zr) and Co-Ni-X (X = Al, Mg, V). Ti-Nb-Mo alloys reveal compositional effects in H-storage behavior, in particular Ti, Nb, and V enhance H-storage capacity, while Mo reduces H/M and hydrogen weight percent by 40-50%. We attributed to slow hydrogen kinetics in molybdenum rich alloys, which is validated by our pressure-composition isotherm (PCT) experiments on pure Ti and Ti5Mo95 alloys. Density functional theory (DFT) and molecular simulations also confirm that Ti and Nb promote H diffusion, whereas Mo hinders it, highlighting the interplay between electronic structure, lattice distortions, and hydrogen uptake. Notably, our Gradient Boosting Regression model identifies LLD as a critical factor in H/M predictions. To aid material selection, we present two periodic tables illustrating elemental effects on (a) H2 wt% and (b) solution energy, derived from ML, and provide a reference for identifying alloying elements that enhance hydrogen solubility and storage.