Abstract:In this paper, we introduce OBHS (Optimized Block Huffman Scheme), a novel lossless audio compression algorithm tailored for real-time streaming applications. OBHS leverages block-wise Huffman coding with canonical code representation and intelligent fallback mechanisms to achieve high compression ratios while maintaining low computational complexity. Our algorithm partitions audio data into fixed-size blocks, constructs optimal Huffman trees for each block, and employs canonical codes for efficient storage and transmission. Experimental results demonstrate that OBHS attains compression ratios of up to 93.6% for silence-rich audio and maintains competitive performance across various audio types, including pink noise, tones, and real-world recordings. With a linear time complexity of O(n) for n audio samples, OBHS effectively balances compression efficiency and computational demands, making it highly suitable for resource-constrained real-time audio streaming scenarios.




Abstract:Technology advancements made it easy to measure non-invasive and high-quality electroencephalograph (EEG) signals from human's brain. Hence, development of robust and high-performance AI algorithms becomes crucial to properly process the EEG signals and recognize the patterns, which lead to an appropriate control signal. Despite the advancements in processing the motor imagery EEG signals, the healthcare applications, such as emotion detection, are still in the early stages of AI design. In this paper, we propose a modular framework for the recognition of vowels as the AI part of a brain computer interface system. We carefully designed the modules to discriminate the English vowels given the raw EEG signals, and meanwhile avoid the typical issued with the data-poor environments like most of the healthcare applications. The proposed framework consists of appropriate signal segmentation, filtering, extraction of spectral features, reducing the dimensions by means of principle component analysis, and finally a multi-class classification by decision-tree-based support vector machine (DT-SVM). The performance of our framework was evaluated by a combination of test-set and resubstitution (also known as apparent) error rates. We provide the algorithms of the proposed framework to make it easy for future researchers and developers who want to follow the same workflow.