Abstract:Large language models (LLMs) such as ChatGPT are increasingly integrated into high-stakes decision-making, yet little is known about their susceptibility to social influence. We conducted three preregistered conformity experiments with GPT-4o in a hiring context. In a baseline study, GPT consistently favored the same candidate (Profile C), reported moderate expertise (M = 3.01) and high certainty (M = 3.89), and rarely changed its choice. In Study 1 (GPT + 8), GPT faced unanimous opposition from eight simulated partners and almost always conformed (99.9%), reporting lower certainty and significantly elevated self-reported informational and normative conformity (p < .001). In Study 2 (GPT + 1), GPT interacted with a single partner and still conformed in 40.2% of disagreement trials, reporting less certainty and more normative conformity. Across studies, results demonstrate that GPT does not act as an independent observer but adapts to perceived social consensus. These findings highlight risks of treating LLMs as neutral decision aids and underline the need to elicit AI judgments prior to exposing them to human opinions.
Abstract:As robots become increasingly involved in decision-making processes (e.g., personnel selection), concerns about fairness and social inclusion arise. This study examines social exclusion in robot-led group interviews by robot Ameca, exploring the relationship between objective exclusion (robot's attention allocation), subjective exclusion (perceived exclusion), mood change, and need fulfillment. In a controlled lab study (N = 35), higher objective exclusion significantly predicted subjective exclusion. In turn, subjective exclusion negatively impacted mood and need fulfillment but only mediated the relationship between objective exclusion and need fulfillment. A piecewise regression analysis identified a critical threshold at which objective exclusion begins to be perceived as subjective exclusion. Additionally, the standing position was the primary predictor of exclusion, whereas demographic factors (e.g., gender, height) had no significant effect. These findings underscore the need to consider both objective and subjective exclusion in human-robot interactions and have implications for fairness in robot-assisted hiring processes.