MRE, CRIStAL
Abstract:This paper investigates whether structural econometric models can rival machine learning in forecasting energy--macro dynamics while retaining causal interpretability. Using monthly data from 1999 to 2025, we develop a unified framework that integrates Time-Varying Parameter Structural VARs (TVP-SVAR) with advanced dependence structures, including DCC-GARCH, t-copulas, and mixed Clayton--Frank--Gumbel copulas. These models are empirically evaluated against leading machine learning techniques Gaussian Process Regression (GPR), Artificial Neural Networks, Random Forests, and Support Vector Regression across seven macro-financial and energy variables, with Brent crude oil as the central asset. The findings reveal three major insights. First, TVP-SVAR consistently outperforms standard VAR models, confirming structural instability in energy transmission channels. Second, copula-based extensions capture non-linear and tail dependence more effectively than symmetric DCC models, particularly during periods of macroeconomic stress. Third, despite their methodological differences, copula-enhanced econometric models and GPR achieve statistically equivalent predictive accuracy (t-test p = 0.8444). However, only the econometric approach provides interpretable impulse responses, regime shifts, and tail-risk diagnostics. We conclude that machine learning can replicate predictive performance but cannot substitute the explanatory power of structural econometrics. This synthesis offers a pathway where AI accuracy and economic interpretability jointly inform energy policy and risk management.
Abstract:In an environment of increasingly volatile financial markets, the accurate estimation of risk remains a major challenge. Traditional econometric models, such as GARCH and its variants, are based on assumptions that are often too rigid to adapt to the complexity of the current market dynamics. To overcome these limitations, we propose a hybrid framework for Value-at-Risk (VaR) estimation, combining GARCH volatility models with deep reinforcement learning. Our approach incorporates directional market forecasting using the Double Deep Q-Network (DDQN) model, treating the task as an imbalanced classification problem. This architecture enables the dynamic adjustment of risk-level forecasts according to market conditions. Empirical validation on daily Eurostoxx 50 data covering periods of crisis and high volatility shows a significant improvement in the accuracy of VaR estimates, as well as a reduction in the number of breaches and also in capital requirements, while respecting regulatory risk thresholds. The ability of the model to adjust risk levels in real time reinforces its relevance to modern and proactive risk management.