Abstract:Integrating Artificial Intelligence (AI) technology in electric vehicles (EV) introduces unique challenges for safety assurance, particularly within the framework of ISO 26262, which governs functional safety in the automotive domain. Traditional assessment methodologies are not geared toward evaluating AI-based functions and require evolving standards and practices. This paper explores how an independent assessment of an AI component in an EV can be achieved when combining ISO 26262 with the recently released ISO/PAS 8800, whose scope is AI safety for road vehicles. The AI-driven State of Charge (SOC) battery estimation exemplifies the process. Key features relevant to the independent assessment of this extended evaluation approach are identified. As part of the evaluation, robustness testing of the AI component is conducted using fault injection experiments, wherein perturbed sensor inputs are systematically introduced to assess the component's resilience to input variance.
Abstract:Various types of vehicle automation is increasingly used in a variety of environments including road vehicles such as cars or automated shuttles, confined areas such as mines or harbours, or in agriculture and forestry. In many use cases, the benefits are greater if several automated vehicles (AVs) cooperate to aid each other reach their goals more efficiently, or collaborate to complete a common task. Taxonomies and definitions create a common framework that helps researchers and practitioners advance the field. However, most existing work focus on road vehicles. In this paper, we review and extend taxonomies and definitions to encompass individually acting as well as cooperative and collaborative AVs for both on-road and off-road use cases. In particular, we introduce classes of collaborative vehicles not defined in existing literature, and define levels of automation suitable for vehicles where automation applies to additional functions in addition to the driving task.