CREM, LINCS
Abstract:We investigate the multiuser scheduling problem in multiple-input multiple-output (MIMO) systems using orthogonal frequency division multiplexing (OFDM) and hybrid beamforming in which a base station (BS) communicates with multiple users over millimeter wave (mmWave) channels in the downlink. Improved scheduling is critical for enhancing spectral efficiency and the long-term performance of the system from the perspective of proportional fairness (PF) metric in hybrid beamforming systems due to its limited multiplexing gain. Our objective is to maximize PF by properly designing the analog and digital precoders within the hybrid beamforming and selecting the users subject to the number of radio frequency (RF) chains. Leveraging the characteristics of mmWave channels, we apply a two-timescale protocol. On a long timescale, we assign an analog beam to each user. Scheduling the users and designing the digital precoder are done accordingly on a short timescale. To conduct scheduling, we propose combinatorial solutions, such as greedy and sorting algorithms, followed by a machine learning (ML) approach. Our numerical results highlight the trade-off between the performance and complexity of the proposed approaches. Consequently, we show that the choice of approach depends on the specific criteria within a given scenario.
Abstract:Many decision problems cannot be solved exactly and use several estimation algorithms that assign scores to the different available options. The estimation errors can have various correlations, from low (e.g. between two very different approaches) to high (e.g. when using a given algorithm with different hyperparameters). Most aggregation rules would suffer from this diversity of correlations. In this article, we propose different aggregation rules that take correlations into account, and we compare them to naive rules in various experiments based on synthetic data. Our results show that when sufficient information is known about the correlations between errors, a maximum likelihood aggregation should be preferred. Otherwise, typically with limited training data, we recommend a method that we call Embedded Voting (EV).