Abstract:Critical domain knowledge typically resides with few experts, creating organizational bottlenecks in scalability and decision-making. Non-experts struggle to create effective visualizations, leading to suboptimal insights and diverting expert time. This paper investigates how to capture and embed human domain knowledge into AI agent systems through an industrial case study. We propose a software engineering framework to capture human domain knowledge for engineering AI agents in simulation data visualization by augmenting a Large Language Model (LLM) with a request classifier, Retrieval-Augmented Generation (RAG) system for code generation, codified expert rules, and visualization design principles unified in an agent demonstrating autonomous, reactive, proactive, and social behavior. Evaluation across five scenarios spanning multiple engineering domains with 12 evaluators demonstrates 206% improvement in output quality, with our agent achieving expert-level ratings in all cases versus baseline's poor performance, while maintaining superior code quality with lower variance. Our contributions are: an automated agent-based system for visualization generation and a validated framework for systematically capturing human domain knowledge and codifying tacit expert knowledge into AI agents, demonstrating that non-experts can achieve expert-level outcomes in specialized domains.
Abstract:Computer-Aided Engineering (CAE) enables simulation experts to optimize complex models, but faces challenges in user experience (UX) that limit efficiency and accessibility. While artificial intelligence (AI) has demonstrated potential to enhance CAE processes, research integrating these fields with a focus on UX remains fragmented. This paper presents a multivocal literature review (MLR) examining how AI enhances UX in CAE software across both academic research and industry implementations. Our analysis reveals significant gaps between academic explorations and industry applications, with companies actively implementing LLMs, adaptive UIs, and recommender systems while academic research focuses primarily on technical capabilities without UX validation. Key findings demonstrate opportunities in AI-powered guidance, adaptive interfaces, and workflow automation that remain underexplored in current research. By mapping the intersection of these domains, this study provides a foundation for future work to address the identified research gaps and advance the integration of AI to improve CAE user experience.