Abstract:We investigate the convergence properties of popular data-augmentation samplers for Bayesian probit regression. Leveraging recent results on Gibbs samplers for log-concave targets, we provide simple and explicit non-asymptotic bounds on the associated mixing times (in Kullback-Leibler divergence). The bounds depend explicitly on the design matrix and the prior precision, while they hold uniformly over the vector of responses. We specialize the results for different regimes of statistical interest, when both the number of data points $n$ and parameters $p$ are large: in particular we identify scenarios where the mixing times remain bounded as $n,p\to\infty$, and ones where they do not. The results are shown to be tight (in the worst case with respect to the responses) and provide guidance on choices of prior distributions that provably lead to fast mixing. An empirical analysis based on coupling techniques suggests that the bounds are effective in predicting practically observed behaviours.
Abstract:The Gibbs sampler (a.k.a. Glauber dynamics and heat-bath algorithm) is a popular Markov Chain Monte Carlo algorithm which iteratively samples from the conditional distributions of a probability measure $\pi$ of interest. Under the assumption that $\pi$ is strongly log-concave, we show that the random scan Gibbs sampler contracts in relative entropy and provide a sharp characterization of the associated contraction rate. Assuming that evaluating conditionals is cheap compared to evaluating the joint density, our results imply that the number of full evaluations of $\pi$ needed for the Gibbs sampler to mix grows linearly with the condition number and is independent of the dimension. If $\pi$ is non-strongly log-concave, the convergence rate in entropy degrades from exponential to polynomial. Our techniques are versatile and extend to Metropolis-within-Gibbs schemes and the Hit-and-Run algorithm. A comparison with gradient-based schemes and the connection with the optimization literature are also discussed.
Abstract:We study general coordinate-wise MCMC schemes (such as Metropolis-within-Gibbs samplers), which are commonly used to fit Bayesian non-conjugate hierarchical models. We relate their convergence properties to the ones of the corresponding (potentially not implementable) Gibbs sampler through the notion of conditional conductance. This allows us to study the performances of popular Metropolis-within-Gibbs schemes for non-conjugate hierarchical models, in high-dimensional regimes where both number of datapoints and parameters increase. Given random data-generating assumptions, we establish dimension-free convergence results, which are in close accordance with numerical evidences. Applications to Bayesian models for binary regression with unknown hyperparameters and discretely observed diffusions are also discussed. Motivated by such statistical applications, auxiliary results of independent interest on approximate conductances and perturbation of Markov operators are provided.
Abstract:Gibbs samplers are popular algorithms to approximate posterior distributions arising from Bayesian hierarchical models. Despite their popularity and good empirical performances, however, there are still relatively few quantitative theoretical results on their scalability or lack thereof, e.g. much less than for gradient-based sampling methods. We introduce a novel technique to analyse the asymptotic behaviour of mixing times of Gibbs Samplers, based on tools of Bayesian asymptotics. We apply our methodology to high dimensional hierarchical models, obtaining dimension-free convergence results for Gibbs samplers under random data-generating assumptions, for a broad class of two-level models with generic likelihood function. Specific examples with Gaussian, binomial and categorical likelihoods are discussed.
Abstract:Dirichlet process mixtures are flexible non-parametric models, particularly suited to density estimation and probabilistic clustering. In this work we study the posterior distribution induced by Dirichlet process mixtures as the sample size increases, and more specifically focus on consistency for the unknown number of clusters when the observed data are generated from a finite mixture. Crucially, we consider the situation where a prior is placed on the concentration parameter of the underlying Dirichlet process. Previous findings in the literature suggest that Dirichlet process mixtures are typically not consistent for the number of clusters if the concentration parameter is held fixed and data come from a finite mixture. Here we show that consistency for the number of clusters can be achieved if the concentration parameter is adapted in a fully Bayesian way, as commonly done in practice. Our results are derived for data coming from a class of finite mixtures, with mild assumptions on the prior for the concentration parameter and for a variety of choices of likelihood kernels for the mixture.