Abstract:Ancient populations markedly transformed Neotropical forests, yet understanding the long-term effects of ancient human management, particularly at high-resolution scales, remains challenging. In this work we propose a new approach to investigate archaeological areas of influence based on vegetation signatures. It consists of a deep learning model trained on satellite imagery to identify palm trees, followed by a clustering algorithm to identify palm clusters, which are then used to estimate ancient management areas. To assess the palm distribution in relation to past human activity, we applied the proposed approach to unique high-resolution satellite imagery data covering 765 km2 of the Sierra Nevada de Santa Marta, Colombia. With this work, we also release a manually annotated palm tree dataset along with estimated locations of archaeological sites from ground-surveys and legacy records. Results demonstrate how palms were significantly more abundant near archaeological sites showing large infrastructure investment. The extent of the largest palm cluster indicates that ancient human-managed areas linked to major infrastructure sites may be up to two orders of magnitude bigger than indicated by archaeological evidence alone. Our findings suggest that pre-Columbian populations influenced local vegetation fostering conditions conducive to palm proliferation, leaving a lasting ecological footprint. This may have lowered the logistical costs of establishing infrastructure-heavy settlements in otherwise less accessible locations. Overall, this study demonstrates the potential of integrating artificial intelligence approaches with new ecological and archaeological data to identify archaeological areas of interest through vegetation patterns, revealing fine-scale human-environment interactions.