Abstract:The integration of large language models (LLMs) into materials science offers a transformative opportunity to streamline computational workflows, yet current agentic systems remain constrained by rigid tool-calling approaches and narrowly scoped agents. In this work, we introduce QUASAR, a universal autonomous system for atomistic simulation designed to facilitate production-grade scientific discovery. QUASAR autonomously orchestrates complex multi-scale workflows across diverse methods, including density functional theory, machine learning potentials, molecular dynamics, and Monte Carlo simulations. The system incorporates robust mechanisms for adaptive planning, context-efficient memory management, and hybrid knowledge retrieval to navigate real-world research scenarios without human intervention. We benchmark QUASAR against a series of three-tiered tasks, progressing from routine tasks to frontier research challenges such as photocatalyst screening and novel material assessment. These results suggest that QUASAR can function as a general atomistic reasoning system rather than a task-specific automation framework. They also provide initial evidence supporting the potential deployment of agentic AI as a component of computational chemistry research workflows, while identifying areas requiring further development.
Abstract:Large language models (LLMs) are rapidly transforming materials science. This review examines recent LLM applications across the materials discovery pipeline, focusing on three key areas: mining scientific literature , predictive modelling, and multi-agent experimental systems. We highlight how LLMs extract valuable information such as synthesis conditions from text, learn structure-property relationships, and can coordinate agentic systems integrating computational tools and laboratory automation. While progress has been largely dependent on closed-source commercial models, our benchmark results demonstrate that open-source alternatives can match performance while offering greater transparency, reproducibility, cost-effectiveness, and data privacy. As open-source models continue to improve, we advocate their broader adoption to build accessible, flexible, and community-driven AI platforms for scientific discovery.