Abstract:Recent advancements in LLMs indicate potential for novel applications, e.g., through reasoning capabilities in the latest OpenAI and DeepSeek models. For applying these models in specific domains beyond text generation, LLM-based multi-agent approaches can be utilized that solve complex tasks by combining reasoning techniques, code generation, and software execution. Applications might utilize these capabilities and the knowledge of specialized LLM agents. However, while many evaluations are performed on LLMs, reasoning techniques, and applications individually, their joint specification and combined application is not explored well. Defined specifications for multi-agent LLM systems are required to explore their potential and their suitability for specific applications, allowing for systematic evaluations of LLMs, reasoning techniques, and related aspects. This paper reports the results of exploratory research to specify and evaluate these aspects through a multi-agent system. The system architecture and prototype are extended from previous research and a specification is introduced for multi-agent systems. Test cases involving cybersecurity tasks indicate feasibility of the architecture and evaluation approach. In particular, the results show the evaluation of question answering, server security, and network security tasks that were completed correctly by agents with LLMs from OpenAI and DeepSeek.
Abstract:Large Language Models (LLMs) recently demonstrated capabilities for generating source code in common programming languages. Additionally, commercial products such as ChatGPT 4 started to provide code interpreters, allowing for the automatic execution of generated code fragments, instant feedback, and the possibility to develop and refine in a conversational fashion. With an exploratory research approach, this paper applies code generation and interpretation to conceptual models. The concept and prototype of a conceptual model interpreter is explored, capable of rendering visual models generated in textual syntax by state-of-the-art LLMs such as Llama~2 and ChatGPT 4. In particular, these LLMs can generate textual syntax for the PlantUML and Graphviz modeling software that is automatically rendered within a conversational user interface. The first result is an architecture describing the components necessary to interact with interpreters and LLMs through APIs or locally, providing support for many commercial and open source LLMs and interpreters. Secondly, experimental results for models generated with ChatGPT 4 and Llama 2 are discussed in two cases covering UML and, on an instance level, graphs created from custom data. The results indicate the possibility of modeling iteratively in a conversational fashion.
Abstract:The BPM conference has a long tradition as the premier venue for publishing research on business process management. For exploring the evolution of research topics, we present the findings from a computational bibliometric analysis of the BPM conference proceedings from the past 15 years. We used the publicly available DBLP dataset as a basis for the analysis, which we enriched with data from websites and databases of the relevant publishers. In addition to a detailed analysis of the publication results, we performed a content-based analysis of over 1,200 papers from the BPM conference and its workshops using Latent Dirichlet Allocation. This offers insights into historical developments in Business Process Management research and provides the community with potential future prospects.