Alert button
Picture for Fatemeh Shiri

Fatemeh Shiri

Alert button

Identity-preserving Face Recovery from Portraits

Feb 05, 2018
Fatemeh Shiri, Xin Yu, Fatih Porikli, Richard Hartley, Piotr Koniusz

Figure 1 for Identity-preserving Face Recovery from Portraits
Figure 2 for Identity-preserving Face Recovery from Portraits
Figure 3 for Identity-preserving Face Recovery from Portraits
Figure 4 for Identity-preserving Face Recovery from Portraits

Recovering the latent photorealistic faces from their artistic portraits aids human perception and facial analysis. However, a recovery process that can preserve identity is challenging because the fine details of real faces can be distorted or lost in stylized images. In this paper, we present a new Identity-preserving Face Recovery from Portraits (IFRP) to recover latent photorealistic faces from unaligned stylized portraits. Our IFRP method consists of two components: Style Removal Network (SRN) and Discriminative Network (DN). The SRN is designed to transfer feature maps of stylized images to the feature maps of the corresponding photorealistic faces. By embedding spatial transformer networks into the SRN, our method can compensate for misalignments of stylized faces automatically and output aligned realistic face images. The role of the DN is to enforce recovered faces to be similar to authentic faces. To ensure the identity preservation, we promote the recovered and ground-truth faces to share similar visual features via a distance measure which compares features of recovered and ground-truth faces extracted from a pre-trained VGG network. We evaluate our method on a large-scale synthesized dataset of real and stylized face pairs and attain state of the art results. In addition, our method can recover photorealistic faces from previously unseen stylized portraits, original paintings and human-drawn sketches.

Viaarxiv icon

Face Destylization

Feb 05, 2018
Fatemeh Shiri, Xin Yu, Fatih Porikli, Piotr Koniusz

Figure 1 for Face Destylization
Figure 2 for Face Destylization
Figure 3 for Face Destylization
Figure 4 for Face Destylization

Numerous style transfer methods which produce artistic styles of portraits have been proposed to date. However, the inverse problem of converting the stylized portraits back into realistic faces is yet to be investigated thoroughly. Reverting an artistic portrait to its original photo-realistic face image has potential to facilitate human perception and identity analysis. In this paper, we propose a novel Face Destylization Neural Network (FDNN) to restore the latent photo-realistic faces from the stylized ones. We develop a Style Removal Network composed of convolutional, fully-connected and deconvolutional layers. The convolutional layers are designed to extract facial components from stylized face images. Consecutively, the fully-connected layer transfers the extracted feature maps of stylized images into the corresponding feature maps of real faces and the deconvolutional layers generate real faces from the transferred feature maps. To enforce the destylized faces to be similar to authentic face images, we employ a discriminative network, which consists of convolutional and fully connected layers. We demonstrate the effectiveness of our network by conducting experiments on an extensive set of synthetic images. Furthermore, we illustrate our network can recover faces from stylized portraits and real paintings for which the stylized data was unavailable during the training phase.

Viaarxiv icon