Abstract:In this work, we introduce novel algorithms for label propagation and self-training using fractional heat kernel dynamics with a source term. We motivate the methodology through the classical correspondence of information theory with the physics of parabolic evolution equations. We integrate the fractional heat kernel into Graph Neural Network architectures such as Graph Convolutional Networks and Graph Attention, enhancing their expressiveness through adaptive, multi-hop diffusion. By applying Chebyshev polynomial approximations, large graphs become computationally feasible. Motivating variational formulations demonstrate that by extending the classical diffusion model to fractional powers of the Laplacian, nonlocal interactions deliver more globally diffusing labels. The particular balance between supervision of known labels and diffusion across the graph is particularly advantageous in the case where only a small number of labeled training examples are present. We demonstrate the effectiveness of this approach on standard datasets.
Abstract:This paper presents an approach to semi-supervised learning for the classification of data using the Lipschitz Learning on graphs. We develop a graph-based semi-supervised learning framework that leverages the properties of the infinity Laplacian to propagate labels in a dataset where only a few samples are labeled. By extending the theory of spatial segregation from the Laplace operator to the infinity Laplace operator, both in continuum and discrete settings, our approach provides a robust method for dealing with class imbalance, a common challenge in machine learning. Experimental validation on several benchmark datasets demonstrates that our method not only improves classification accuracy compared to existing methods but also ensures efficient label propagation in scenarios with limited labeled data.




Abstract:Laplacian learning method is a well-established technique in classical graph-based semi-supervised learning, but its potential in the quantum domain remains largely unexplored. This study investigates the performance of the Laplacian-based Quantum Semi-Supervised Learning (QSSL) method across four benchmark datasets -- Iris, Wine, Breast Cancer Wisconsin, and Heart Disease. Further analysis explores the impact of increasing Qubit counts, revealing that adding more Qubits to a quantum system doesn't always improve performance. The effectiveness of additional Qubits depends on the quantum algorithm and how well it matches the dataset. Additionally, we examine the effects of varying entangling layers on entanglement entropy and test accuracy. The performance of Laplacian learning is highly dependent on the number of entangling layers, with optimal configurations varying across different datasets. Typically, moderate levels of entanglement offer the best balance between model complexity and generalization capabilities. These observations highlight the crucial need for precise hyperparameter tuning tailored to each dataset to achieve optimal performance in Laplacian learning methods.




Abstract:In this work, we improve the accuracy of several known algorithms to address the classification of large datasets when few labels are available. Our framework lies in the realm of graph-based semi-supervised learning. With novel modifications on Gaussian Random Fields Learning and Poisson Learning algorithms, we increase the accuracy and create more robust algorithms. Experimental results demonstrate the efficiency and superiority of the proposed methods over conventional graph-based semi-supervised techniques, especially in the context of imbalanced datasets.