Abstract:Face Recognition is a common problem in Machine Learning. This technology has already been widely used in our lives. For example, Facebook can automatically tag people's faces in images, and also some mobile devices use face recognition to protect private security. Face images comes with different background, variant illumination, different facial expression and occlusion. There are a large number of approaches for the face recognition. Different approaches for face recognition have been experimented with specific databases which consist of single type, format and composition of image. Doing so, these approaches don't suit with different face databases. One of the basic face recognition techniques is eigenface which is quite simple, efficient, and yields generally good results in controlled circumstances. So, this paper presents an experimental performance comparison of face recognition using Principal Component Analysis (PCA) and Normalized Principal Component Analysis (NPCA). The experiments are carried out on the ORL (ATT) and Indian face database (IFD) which contain variability in expression, pose, and facial details. The results obtained for the two methods have been compared by varying the number of training images. MATLAB is used for implementing algorithms also.
Abstract:An Unmanned Ariel vehicle (UAV) has greater importance in the army for border security. The main objective of this article is to develop an OpenCV-Python code using Haar Cascade algorithm for object and face detection. Currently, UAVs are used for detecting and attacking the infiltrated ground targets. The main drawback for this type of UAVs is that sometimes the object are not properly detected, which thereby causes the object to hit the UAV. This project aims to avoid such unwanted collisions and damages of UAV. UAV is also used for surveillance that uses Voila-jones algorithm to detect and track humans. This algorithm uses cascade object detector function and vision. train function to train the algorithm. The main advantage of this code is the reduced processing time. The Python code was tested with the help of available database of video and image, the output was verified.