Abstract:We introduce LESS (Large Language Model Enhanced Semi-supervised Learning), a versatile framework that leverages Large Language Models (LLMs) to correct pseudo labels generated from in-the-wild data. Within the LESS framework, pseudo-labeled text from Automatic Speech Recognition (ASR) or Automatic Speech Translation (AST) of the unsupervised data is refined by an LLM, and augmented by a data filtering strategy to optimize LLM knowledge transfer efficiency. Experiments on both Mandarin ASR and Spanish-to-English AST tasks show that LESS achieves a notable absolute WER reduction of 3.77% on the Wenet Speech test set, as well as BLEU scores of 34.0 and 64.7 on Callhome and Fisher test sets respectively. These results validate the adaptability of LESS across different languages, tasks, and domains. Ablation studies conducted with various LLMs and prompt configurations provide novel insights into leveraging LLM-derived knowledge for speech processing applications.
Abstract:Speech emotion recognition is a challenge and an important step towards more natural human-computer interaction (HCI). The popular approach is multimodal emotion recognition based on model-level fusion, which means that the multimodal signals can be encoded to acquire embeddings, and then the embeddings are concatenated together for the final classification. However, due to the influence of noise or other factors, each modality does not always tend to the same emotional category, which affects the generalization of a model. In this paper, we propose a novel regularization method via contrastive learning for multimodal emotion recognition using audio and text. By introducing a discriminator to distinguish the difference between the same and different emotional pairs, we explicitly restrict the latent code of each modality to contain the same emotional information, so as to reduce the noise interference and get more discriminative representation. Experiments are performed on the standard IEMOCAP dataset for 4-class emotion recognition. The results show a significant improvement of 1.44\% and 1.53\% in terms of weighted accuracy (WA) and unweighted accuracy (UA) compared to the baseline system.