CRI
Abstract:Topic modeling is a research field finding increasing applications: historically from document retrieving, to sentiment analysis and text summarization. Large Language Models (LLM) are currently a major trend in text processing, but few works study their usefulness for this task. Formal Concept Analysis (FCA) has recently been presented as a candidate for topic modeling, but no real applied case study has been conducted. In this work, we compare LLM and FCA to better understand their strengths and weakneses in the topic modeling field. FCA is evaluated through the CREA pipeline used in past experiments on topic modeling and visualization, whereas GPT-5 is used for the LLM. A strategy based on three prompts is applied with GPT-5 in a zero-shot setup: topic generation from document batches, merging of batch results into final topics, and topic labeling. A first experiment reuses the teaching materials previously used to evaluate CREA, while a second experiment analyzes 40 research articles in information systems to compare the extracted topics with the underling subfields.
Abstract:Knowledge Discovery in Databases (KDD) aims to exploit the vast amounts of data generated daily across various domains of computer applications. Its objective is to extract hidden and meaningful knowledge from datasets through a structured process comprising several key steps: data selection, preprocessing, transformation, data mining, and visualization. Among the core data mining techniques are classification and clustering. Classification involves predicting the class of new instances using a classifier trained on labeled data. Several approaches have been proposed in the literature, including Decision Tree Induction, Bayesian classifiers, Nearest Neighbor search, Neural Networks, Support Vector Machines, and Formal Concept Analysis (FCA). The last one is recognized as an effective approach for interpretable and explainable learning. It is grounded in the mathematical structure of the concept lattice, which enables the generation of formal concepts and the discovery of hidden relationships among them. In this paper, we present a state-of-theart review of FCA-based classifiers. We explore various methods for computing closure operators from nominal data and introduce a novel approach for constructing a partial concept lattice that focuses on the most relevant concepts. Experimental results are provided to demonstrate the efficiency of the proposed method.