Abstract:We have developed a new framework using time-series analysis for dynamically assigning mobile network traffic prediction models in previously unseen wireless environments. Our framework selectively employs learned behaviors, outperforming any single model with over a 50% improvement relative to current studies. More importantly, it surpasses traditional approaches without needing prior knowledge of a cell. While this paper focuses on network traffic prediction using our adaptive forecasting framework, this framework can also be applied to other machine learning applications in uncertain environments. The framework begins with unsupervised clustering of time-series data to identify unique trends and seasonal patterns. Subsequently, we apply supervised learning for traffic volume prediction within each cluster. This specialization towards specific traffic behaviors occurs without penalties from spatial and temporal variations. Finally, the framework adaptively assigns trained models to new, previously unseen cells. By analyzing real-time measurements of a cell, our framework intelligently selects the most suitable cluster for that cell at any given time, with cluster assignment dynamically adjusting to spatio-temporal fluctuations.
Abstract:This study presents a spatiotemporal traffic prediction approach for NextG mobile networks, ensuring the service-level agreements (SLAs) of each network slice. Our approach is multivariate, multi-step, and spatiotemporal. Leveraging 20 radio access network (RAN) features, peak traffic hour data, and mobility-based clustering, we propose a parametric SLA-based loss function to guarantee an SLA violation rate. We focus on single-cell, multi-cell, and slice-based prediction approaches and present a detailed comparative analysis of their performances, strengths, and limitations. First, we address the application of single-cell and multi-cell training architectures. While single-cell training offers individual cell-level prediction, multi-cell training involves training a model using traffic from multiple cells from the same or different base stations. We show that the single-cell approach outperforms the multi-cell approach and results in test loss improvements of 11.4% and 38.1% compared to baseline SLA-based and MAE-based models, respectively. Next, we explore slice-based traffic prediction. We present single-slice and multi-slice methods for slice-based downlink traffic volume prediction, arguing that multi-slice prediction offers a more accurate forecast. The slice-based model we introduce offers substantial test loss improvements of 28.2%, 36.4%, and 55.6% compared to our cell-based model, the baseline SLA-based model, and the baseline MAE-based model, respectively.
Abstract:This paper focuses on predicting downlink (DL) traffic volume in mobile networks while minimizing overprovisioning and meeting a given service-level agreement (SLA) violation rate. We present a multivariate, multi-step, and SLA-driven approach that incorporates 20 different radio access network (RAN) features, a custom feature set based on peak traffic hours, and handover-based clustering to leverage the spatiotemporal effects. In addition, we propose a custom loss function that ensures the SLA violation rate constraint is satisfied while minimizing overprovisioning. We also perform multi-step prediction up to 24 steps ahead and evaluate performance under both single-step and multi-step prediction conditions. Our study makes several contributions, including the analysis of RAN features, the custom feature set design, a custom loss function, and a parametric method to satisfy SLA constraints.