Abstract:Explainable video anomaly detection (VAD) is crucial for safety-critical applications, yet even with recent progress, much of the research still lacks spatial grounding, making the explanations unverifiable. This limitation is especially pronounced in multi-entity interactions, where existing explainable VAD methods often produce incomplete or visually misaligned descriptions, reducing their trustworthiness. To address these challenges, we introduce instance-aligned captions that link each textual claim to specific object instances with appearance and motion attributes. Our framework captures who caused the anomaly, what each entity was doing, whom it affected, and where the explanationis grounded, enabling verifiable and actionable reasoning. We annotate eight widely used VAD benchmarks and extend the 360-degree egocentric dataset, VIEW360, with 868 additional videos, eight locations, and four new anomaly types, creating VIEW360+, a comprehensive testbed for explainable VAD. Experiments show that our instance-level spatially grounded captions reveal significant limitations in current LLM- and VLM-based methods while providing a robust benchmark for future research in trustworthy and interpretable anomaly detection.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains, including software development, education, and technical assistance. Among these, software development is one of the key areas where LLMs are increasingly adopted. However, when hardware constraints are considered-for instance, in physical computing, where software must interact with and control physical hardware -their effectiveness has not been fully explored. To address this gap, we introduce \textsc{PCEval} (Physical Computing Evaluation), the first benchmark in physical computing that enables a fully automatic evaluation of the capabilities of LLM in both the logical and physical aspects of the projects, without requiring human assessment. Our evaluation framework assesses LLMs in generating circuits and producing compatible code across varying levels of project complexity. Through comprehensive testing of 13 leading models, \textsc{PCEval} provides the first reproducible and automatically validated empirical assessment of LLMs' ability to reason about fundamental hardware implementation constraints within a simulation environment. Our findings reveal that while LLMs perform well in code generation and logical circuit design, they struggle significantly with physical breadboard layout creation, particularly in managing proper pin connections and avoiding circuit errors. \textsc{PCEval} advances our understanding of AI assistance in hardware-dependent computing environments and establishes a foundation for developing more effective tools to support physical computing education.