Abstract:Negabent Boolean functions are defined by having a flat magnitude spectrum under the nega-Hadamard transform. They exist in both even and odd dimensions, and the subclass of functions that are simultaneously bent and negabent (bent-negabent) has attracted interest due to the combined optimal periodic and negaperiodic spectral properties. In this work, we investigate how evolutionary algorithms can be used to evolve (bent-)negabent Boolean functions. Our experimental results indicate that evolutionary algorithms, especially genetic programming, are a suitable approach for evolving negabent Boolean functions, and we successfully evolve such functions in all dimensions we consider.
Abstract:The advent of quantum computing threatens classical public-key cryptography, motivating NIST's adoption of post-quantum schemes such as those based on the Module Learning With Errors (Module-LWE) problem. We present NoMod ML-Attack, a hybrid white-box cryptanalytic method that circumvents the challenge of modeling modular reduction by treating wrap-arounds as statistical corruption and casting secret recovery as robust linear estimation. Our approach combines optimized lattice preprocessing--including reduced-vector saving and algebraic amplification--with robust estimators trained via Tukey's Biweight loss. Experiments show NoMod achieves full recovery of binary secrets for dimension $n = 350$, recovery of sparse binomial secrets for $n = 256$, and successful recovery of sparse secrets in CRYSTALS-Kyber settings with parameters $(n, k) = (128, 3)$ and $(256, 2)$. We release our implementation in an anonymous repository https://anonymous.4open.science/r/NoMod-3BD4.