Abstract:Real-time decoding of target variables from multiple simultaneously recorded neural time-series modalities, such as discrete spiking activity and continuous field potentials, is important across various neuroscience applications. However, a major challenge for doing so is that different neural modalities can have different timescales (i.e., sampling rates) and different probabilistic distributions, or can even be missing at some time-steps. Existing nonlinear models of multimodal neural activity do not address different timescales or missing samples across modalities. Further, some of these models do not allow for real-time decoding. Here, we develop a learning framework that can enable real-time recursive decoding while nonlinearly aggregating information across multiple modalities with different timescales and distributions and with missing samples. This framework consists of 1) a multiscale encoder that nonlinearly aggregates information after learning within-modality dynamics to handle different timescales and missing samples in real time, 2) a multiscale dynamical backbone that extracts multimodal temporal dynamics and enables real-time recursive decoding, and 3) modality-specific decoders to account for different probabilistic distributions across modalities. In both simulations and three distinct multiscale brain datasets, we show that our model can aggregate information across modalities with different timescales and distributions and missing samples to improve real-time target decoding. Further, our method outperforms various linear and nonlinear multimodal benchmarks in doing so.
Abstract:Local field potentials (LFPs) can be routinely recorded alongside spiking activity in intracortical neural experiments, measure a larger complementary spatiotemporal scale of brain activity for scientific inquiry, and can offer practical advantages over spikes, including greater long-term stability, robustness to electrode degradation, and lower power requirements. Despite these advantages, recent neural modeling frameworks have largely focused on spiking activity since LFP signals pose inherent modeling challenges due to their aggregate, population-level nature, often leading to lower predictive power for downstream task variables such as motor behavior. To address this challenge, we introduce a cross-modal knowledge distillation framework that transfers high-fidelity representational knowledge from pretrained multi-session spike transformer models to LFP transformer models. Specifically, we first train a teacher spike model across multiple recording sessions using a masked autoencoding objective with a session-specific neural tokenization strategy. We then align the latent representations of the student LFP model to those of the teacher spike model. Our results show that the Distilled LFP models consistently outperform single- and multi-session LFP baselines in both fully unsupervised and supervised settings, and can generalize to other sessions without additional distillation while maintaining superior performance. These findings demonstrate that cross-modal knowledge distillation is a powerful and scalable approach for leveraging high-performing spike models to develop more accurate LFP models.