Abstract:Solar flares are energetic events in the solar atmosphere that are often linked with solar radio bursts (SRBs). SRBs are observed at metric to decametric wavelengths and are classified into five spectral classes (Type I--V) based on their signature in dynamic spectra. The automatic detection and classification of SRBs is a challenge due to their heterogeneous form. Near-realtime detection and classification of SRBs has become a necessity in recent years due to large data rates generated by advanced radio telescopes such as the LOw Frequency ARray (LOFAR). In this study, we implement congruent deep learning models to automatically detect and classify Type III SRBs. We generated simulated Type III SRBs, which were comparable to Type IIIs seen in real observations, using a deep learning method known as Generative Adversarial Network (GAN). This simulated data was combined with observations from LOFAR to produce a training set that was used to train an object detection model known as YOLOv2 (You Only Look Once). Using this congruent deep learning model system, we can accurately detect Type III SRBs at a mean Average Precision (mAP) value of 77.71%.
Abstract:Solar Radio Bursts (SRBs) are generally observed in dynamic spectra and have five major spectral classes, labelled Type I to Type V depending on their shape and extent in frequency and time. Due to their complex characterisation, a challenge in solar radio physics is the automatic detection and classification of such radio bursts. Classification of SRBs has become fundamental in recent years due to large data rates generated by advanced radio telescopes such as the LOw-Frequency ARray, (LOFAR). Current state-of-the-art algorithms implement the Hough or Radon transform as a means of detecting predefined parametric shapes in images. These algorithms achieve up to 84% accuracy, depending on the Type of radio burst being classified. Other techniques include procedures that rely on Constant-FalseAlarm-Rate detection, which is essentially detection of radio bursts using a de-noising and adaptive threshold in dynamic spectra. It works well for a variety of different Types of radio bursts and achieves an accuracy of up to 70%. In this research, we are introducing a methodology named You Only Look Once v2 (YOLOv2) for solar radio burst classification. By using Type III simulation methods we can train the algorithm to classify real Type III solar radio bursts in real-time at an accu