Abstract:OpenAI released version GPT-4 on March 14, 2023, following the success of ChatGPT, which was announced in November 2022. In addition to the existing GPT-3 features, GPT-4 has the ability to interpret images. To achieve this, the processing power and model have been significantly improved. The ability to process and interpret images goes far beyond the applications and effectiveness of artificial intelligence. In this study, we will first explore the interpretation of radiological images in healthcare using artificial intelligence (AI). Then, we will experiment with the image interpretation capability of the GPT-4. In this way, we will address the question of whether artificial intelligence (AI) can replace a healthcare professional (e.g., a medical doctor) or whether it can be used as a decision support tool that makes decisions easier and more reliable.
Abstract:Challenges exist in learning and understanding religions, such as the complexity and depth of religious doctrines and teachings. Chatbots as question-answering systems can help in solving these challenges. LLM chatbots use NLP techniques to establish connections between topics and accurately respond to complex questions. These capabilities make it perfect for enlightenment on religion as a question-answering chatbot. However, LLMs also tend to generate false information, known as hallucination. Also, the chatbots' responses can include content that insults personal religious beliefs, interfaith conflicts, and controversial or sensitive topics. It must avoid such cases without promoting hate speech or offending certain groups of people or their beliefs. This study uses a vector database-based Retrieval Augmented Generation (RAG) approach to enhance the accuracy and transparency of LLMs. Our question-answering system is called "MufassirQAS". We created a database consisting of several open-access books that include Turkish context. These books contain Turkish translations and interpretations of Islam. This database is utilized to answer religion-related questions and ensure our answers are trustworthy. The relevant part of the dataset, which LLM also uses, is presented along with the answer. We have put careful effort into creating system prompts that give instructions to prevent harmful, offensive, or disrespectful responses to respect people's values and provide reliable results. The system answers and shares additional information, such as the page number from the respective book and the articles referenced for obtaining the information. MufassirQAS and ChatGPT are also tested with sensitive questions. We got better performance with our system. Study and enhancements are still in progress. Results and future works are given.
Abstract:T\"urkiye is located on a fault line; earthquakes often occur on a large and small scale. There is a need for effective solutions for gathering current information during disasters. We can use social media to get insight into public opinion. This insight can be used in public relations and disaster management. In this study, Twitter posts on Izmir Earthquake that took place on October 2020 are analyzed. We question if this analysis can be used to make social inferences on time. Data mining and natural language processing (NLP) methods are used for this analysis. NLP is used for sentiment analysis and topic modelling. The latent Dirichlet Allocation (LDA) algorithm is used for topic modelling. We used the Bidirectional Encoder Representations from Transformers (BERT) model working with Transformers architecture for sentiment analysis. It is shown that the users shared their goodwill wishes and aimed to contribute to the initiated aid activities after the earthquake. The users desired to make their voices heard by competent institutions and organizations. The proposed methods work effectively. Future studies are also discussed.
Abstract:The damage and the impact of natural disasters are becoming more destructive with the increase of urbanization. Today's metropolitan cities are not sufficiently prepared for the pre and post-disaster situations. Digital Twin technology can provide a solution. A virtual copy of the physical city could be created by collecting data from sensors of the Internet of Things (IoT) devices and stored on the cloud infrastructure. This virtual copy is kept current and up to date with the continuous flow of the data coming from the sensors. We propose a disaster management system utilizing machine learning called DT-DMS is used to support decision-making mechanisms. This study aims to show how to educate and prepare emergency center staff by simulating potential disaster situations on the virtual copy. The event of a disaster will be simulated allowing emergency center staff to make decisions and depicting the potential outcomes of these decisions. A rescue operation after an earthquake is simulated. Test results are promising and the simulation scope is planned to be extended.