Abstract:This work addresses the finite-time analysis of nonsmooth nonconvex stochastic optimization under Riemannian manifold constraints. We adapt the notion of Goldstein stationarity to the Riemannian setting as a performance metric for nonsmooth optimization on manifolds. We then propose a Riemannian Online to NonConvex (RO2NC) algorithm, for which we establish the sample complexity of $O(\epsilon^{-3}\delta^{-1})$ in finding $(\delta,\epsilon)$-stationary points. This result is the first-ever finite-time guarantee for fully nonsmooth, nonconvex optimization on manifolds and matches the optimal complexity in the Euclidean setting. When gradient information is unavailable, we develop a zeroth order version of RO2NC algorithm (ZO-RO2NC), for which we establish the same sample complexity. The numerical results support the theory and demonstrate the practical effectiveness of the algorithms.
Abstract:We study decentralized online Riemannian optimization over manifolds with possibly positive curvature, going beyond the Hadamard manifold setting. Decentralized optimization techniques rely on a consensus step that is well understood in Euclidean spaces because of their linearity. However, in positively curved Riemannian spaces, a main technical challenge is that geodesic distances may not induce a globally convex structure. In this work, we first analyze a curvature-aware Riemannian consensus step that enables a linear convergence beyond Hadamard manifolds. Building on this step, we establish a $O(\sqrt{T})$ regret bound for the decentralized online Riemannian gradient descent algorithm. Then, we investigate the two-point bandit feedback setup, where we employ computationally efficient gradient estimators using smoothing techniques, and we demonstrate the same $O(\sqrt{T})$ regret bound through the subconvexity analysis of smoothed objectives.




Abstract:We investigate the finite-time analysis of finding ($\delta,\epsilon$)-stationary points for nonsmooth nonconvex objectives in decentralized stochastic optimization. A set of agents aim at minimizing a global function using only their local information by interacting over a network. We present a novel algorithm, called Multi Epoch Decentralized Online Learning (ME-DOL), for which we establish the sample complexity in various settings. First, using a recently proposed online-to-nonconvex technique, we show that our algorithm recovers the optimal convergence rate of smooth nonconvex objectives. We then extend our analysis to the nonsmooth setting, building on properties of randomized smoothing and Goldstein-subdifferential sets. We establish the sample complexity of $O(\delta^{-1}\epsilon^{-3})$, which to the best of our knowledge is the first finite-time guarantee for decentralized nonsmooth nonconvex stochastic optimization in the first-order setting (without weak-convexity), matching its optimal centralized counterpart. We further prove the same rate for the zero-order oracle setting without using variance reduction.