Abstract:Data-driven super-resolution (SR) methods are often integrated into imaging pipelines as preprocessing steps to improve downstream tasks such as classification and detection. However, these SR models introduce a previously unexplored attack surface into imaging pipelines. In this paper, we present AdvSR, a framework demonstrating that adversarial behavior can be embedded directly into SR model weights during training, requiring no access to inputs at inference time. Unlike prior attacks that perturb inputs or rely on backdoor triggers, AdvSR operates entirely at the model level. By jointly optimizing for reconstruction quality and targeted adversarial outcomes, AdvSR produces models that appear benign under standard image quality metrics while inducing downstream misclassification. We evaluate AdvSR on three SR architectures (SRCNN, EDSR, SwinIR) paired with a YOLOv11 classifier and demonstrate that AdvSR models can achieve high attack success rates with minimal quality degradation. These findings highlight a new model-level threat for imaging pipelines, with implications for how practitioners source and validate models in safety-critical applications.
Abstract:Multispectral imaging sensors typically have wavelength-dependent resolution, which reduces the ability to distinguish small features in some spectral bands. Existing super-resolution methods upsample a multispectral image (MSI) to achieve a common resolution across all bands but are typically sensor-specific, computationally expensive, and may assume invariant image statistics across multiple length scales. In this paper, we introduce ResSR, an efficient and modular residual-based method for super-resolving the lower-resolution bands of a multispectral image. ResSR uses singular value decomposition (SVD) to identify correlations across spectral bands and then applies a residual correction process that corrects only the high-spatial frequency components of the upsampled bands. The SVD formulation improves the conditioning and simplifies the super-resolution problem, and the residual method retains accurate low-spatial frequencies from the measured data while incorporating high-spatial frequency detail from the SVD solution. While ResSR is formulated as the solution to an optimization problem, we derive an approximate closed-form solution that is fast and accurate. We formulate ResSR for any number of distinct resolutions, enabling easy application to any MSI. In a series of experiments on simulated and measured Sentinel-2 MSIs, ResSR is shown to produce image quality comparable to or better than alternative algorithms. However, it is computationally faster and can run on larger images, making it useful for processing large data sets.