Abstract:Transformer architectures offer significant advantages regarding the generation of symbolic music; their capabilities for incorporating user preferences toward what they generate is being studied under many aspects. This paper studies the inclusion of predefined chord constraints in melodic harmonization, i.e., where a desired chord at a specific location is provided along with the melody as inputs and the autoregressive transformer model needs to incorporate the chord in the harmonization that it generates. The peculiarities of involving such constraints is discussed and an algorithm is proposed for tackling this task. This algorithm is called B* and it combines aspects of beam search and A* along with backtracking to force pretrained transformers to satisfy the chord constraints, at the correct onset position within the correct bar. The algorithm is brute-force and has exponential complexity in the worst case; however, this paper is a first attempt to highlight the difficulties of the problem and proposes an algorithm that offers many possibilities for improvements since it accommodates the involvement of heuristics.




Abstract:Conceptual blending is a powerful tool for computational creativity where, for example, the properties of two harmonic spaces may be combined in a consistent manner to produce a novel harmonic space. However, deciding about the importance of property features in the input spaces and evaluating the results of conceptual blending is a nontrivial task. In the specific case of musical harmony, defining the salient features of chord transitions and evaluating invented harmonic spaces requires deep musicological background knowledge. In this paper, we propose a creative tool that helps musicologists to evaluate and to enhance harmonic innovation. This tool allows a music expert to specify arguments over given transition properties. These arguments are then considered by the system when defining combinations of features in an idiom-blending process. A music expert can assess whether the new harmonic idiom makes musicological sense and re-adjust the arguments (selection of features) to explore alternative blends that can potentially produce better harmonic spaces. We conclude with a discussion of future work that would further automate the harmonisation process.