Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, 2800 Kgs. Lyngby, Denmark
Abstract:Automatically detecting and classifying strokes in table tennis video can streamline training workflows, enrich broadcast overlays, and enable fine-grained performance analytics. For this to be possible, annotated video data of table tennis is needed. We extend the public OpenTTGames dataset with highly detailed, frame-accurate shot type annotations (forehand, backhand with subtypes), player posture labels (body lean and leg stance), and rally outcome tags at point end. OpenTTGames is a set of recordings from the side of the table with official labels for bounces, when the ball is above the net, or hitting the net. The dataset already contains ball coordinates near events, which are either "bounce", "net", or "empty_event" in the original OpenTTGames dataset, and semantic masks (humans, table, scoreboard). Our extension adds the types of stroke to the events and a per-player taxonomy so models can move beyond event spotting toward tactical understanding (e.g., whether a stroke is likely to win the point or set up an advantage). We provide a compact coding scheme and code-assisted labeling procedure to support reproducible annotations and baselines for fine-grained stroke understanding in racket sports. This fills a practical gap in the community, where many prior video resources are either not publicly released or carry restrictive/unclear licenses that hinder reuse and benchmarking. Our annotations are released under the same CC BY-NC-SA 4.0 license as OpenTTGames, allowing free non-commercial use, modification, and redistribution, with appropriate attribution.
Abstract:Recent advances of deep learning makes it possible to identify specific events in videos with greater precision. This has great relevance in sports like tennis in order to e.g., automatically collect game statistics, or replay actions of specific interest for game strategy or player improvements. In this paper, we investigate the potential and the challenges of using deep learning to classify tennis actions. Three models of different size, all based on the deep learning architecture SlowFast were trained and evaluated on the academic tennis dataset THETIS. The best models achieve a generalization accuracy of 74 %, demonstrating a good performance for tennis action classification. We provide an error analysis for the best model and pinpoint directions for improvement of tennis datasets in general. We discuss the limitations of the data set, general limitations of current publicly available tennis data-sets, and future steps needed to make progress.