Abstract:The escalating complexity of modern digital systems has imposed significant challenges on integrated circuit (IC) design, necessitating tools that can simplify the IC design flow. The advent of Large Language Models (LLMs) has been seen as a promising development, with the potential to automate the generation of Hardware Description Language (HDL) code, thereby streamlining digital IC design. However, the practical application of LLMs in this area faces substantial hurdles. Notably, current LLMs often generate HDL code with small but critical syntax errors and struggle to accurately convey the high-level semantics of circuit designs. These issues significantly undermine the utility of LLMs for IC design, leading to misinterpretations and inefficiencies. In response to these challenges, this paper presents targeted strategies to harness the capabilities of LLMs for digital ASIC design. We outline approaches that improve the reliability and accuracy of HDL code generation by LLMs. As a practical demonstration of these strategies, we detail the development of a simple three-phase Pulse Width Modulation (PWM) generator. This project, part of the "Efabless AI-Generated Open-Source Chip Design Challenge," successfully passed the Design Rule Check (DRC) and was fabricated, showcasing the potential of LLMs to enhance digital ASIC design. This work underscores the feasibility and benefits of integrating LLMs into the IC design process, offering a novel approach to overcoming the complexities of modern digital systems.
Abstract:In the realm of ASIC engineering, the landscape has been significantly reshaped by the rapid development of LLM, paralleled by an increase in the complexity of modern digital circuits. This complexity has escalated the requirements for HDL coding, necessitating a higher degree of precision and sophistication. However, challenges have been faced due to the less-than-optimal performance of modern language models in generating hardware description code, a situation further exacerbated by the scarcity of the corresponding high-quality code datasets. These challenges have highlighted the gap between the potential of LLMs to revolutionize digital circuit design and their current capabilities in accurately interpreting and implementing hardware specifications. To address these challenges, a strategy focusing on the fine-tuning of the leading-edge nature language model and the reshuffling of the HDL code dataset has been developed. The fine-tuning aims to enhance models' proficiency in generating precise and efficient ASIC design, while the dataset reshuffling is intended to broaden the scope and improve the quality of training material. The model demonstrated significant improvements compared to the base model, with approximately 10% to 20% increase in accuracy across a wide range of temperature for the pass@1 metric. This approach is expected to facilitate a simplified and more efficient LLM-assisted framework for complex circuit design, leveraging their capabilities to meet the sophisticated demands of HDL coding and thus streamlining the ASIC development process.