Abstract:We generalize the attention mechanism by viewing it through the lens of Entropic Optimal Transport, revealing that standard attention corresponds to a transport problem regularized by an implicit uniform prior. We introduce Generalized Optimal transport Attention with Trainable priors (GOAT), a new attention mechanism that replaces this naive assumption with a learnable, continuous prior. This prior maintains full compatibility with optimized kernels such as FlashAttention. GOAT also provides an EOT-based explanation of attention sinks and materializes a solution for them, avoiding the representational trade-offs of standard attention. Finally, by absorbing spatial information into the core attention computation, GOAT learns an extrapolatable prior that combines the flexibility of learned positional embeddings with the length generalization of fixed encodings.
Abstract:The scaled-dot-product attention (SDPA) mechanism is a core component of modern deep learning, but its mathematical form is often motivated by heuristics. This work provides a first-principles justification for SDPA. We first show that the attention forward pass is the exact solution to a degenerate, one-sided Entropic Optimal Transport (EOT) problem, which seeks a distribution that maximizes similarity while being maximally entropic. This optimization perspective has a direct consequence for the backward pass. We prove that the standard gradient computed via backpropagation is mathematically identical to an advantage-based policy gradient, a variance-reduced update rule from reinforcement learning. Crucially, we demonstrate that the EOT formulation of the forward pass induces a specific information geometry on the space of attention distributions. It is this geometry, characterized by the Fisher Information Matrix, that dictates the precise form of the learning gradient, revealing the advantage-based update as a natural consequence of the optimization problem being solved. This unified view reveals SDPA as a principled mechanism where the forward pass performs optimal inference and the backward pass implements a rational, manifold-aware learning update.