Abstract:A combination of traditional image processing methods with advanced neural networks concretes a predictive and preventive healthcare paradigm. This study offers rapid, accurate, and non-invasive diagnostic solutions that can significantly impact patient outcomes, particularly in areas with limited access to radiologists and healthcare resources. In this project, deep learning methods apply in enhancing the diagnosis of respiratory diseases such as COVID-19, lung cancer, and pneumonia from chest x-rays. We trained and validated various neural network models, including CNNs, VGG16, InceptionV3, and EfficientNetB0, with high accuracy, precision, recall, and F1 scores to highlight the models' reliability and potential in real-world diagnostic applications.




Abstract:This study analyzes crop yield prediction in India from 1997 to 2020, focusing on various crops and key environmental factors. It aims to predict agricultural yields by utilizing advanced machine learning techniques like Linear Regression, Decision Tree, KNN, Na\"ive Bayes, K-Mean Clustering, and Random Forest. The models, particularly Na\"ive Bayes and Random Forest, demonstrate high effectiveness, as shown through data visualizations. The research concludes that integrating these analytical methods significantly enhances the accuracy and reliability of crop yield predictions, offering vital contributions to agricultural data science.