Department of Computer Science, University of Pisa, Department of Computer Science, University of Bari Aldo Moro, ISTI CNR
Abstract:Artificial Intelligence (AI) is one of the major technological advancements of this century, bearing incredible potential for users through AI-powered applications and tools in numerous domains. Being often black-box (i.e., its decision-making process is unintelligible), developers typically resort to eXplainable Artificial Intelligence (XAI) techniques to interpret the behaviour of AI models to produce systems that are transparent, fair, reliable, and trustworthy. However, presenting explanations to the user is not trivial and is often left as a secondary aspect of the system's design process, leading to AI systems that are not useful to end-users. This paper presents a Systematic Literature Review on Explanation User Interfaces (XUIs) to gain a deeper understanding of the solutions and design guidelines employed in the academic literature to effectively present explanations to users. To improve the contribution and real-world impact of this survey, we also present a framework for Human-cEnteRed developMent of Explainable user interfaceS (HERMES) to guide practitioners and academics in the design and evaluation of XUIs.
Abstract:Artificial Intelligence algorithms have now become pervasive in multiple high-stakes domains. However, their internal logic can be obscure to humans. Explainable Artificial Intelligence aims to design tools and techniques to illustrate the predictions of the so-called black-box algorithms. The Human-Computer Interaction community has long stressed the need for a more user-centered approach to Explainable AI. This approach can benefit from research in user interface, user experience, and visual analytics. This paper proposes a visual-based method to illustrate rules paired with feature importance. A user study with 15 participants was conducted comparing our visual method with the original output of the algorithm and textual representation to test its effectiveness with users.