Abstract:This paper summarizes the main findings of ADoBo 2025, the shared task on anglicism identification in Spanish proposed in the context of IberLEF 2025. Participants of ADoBo 2025 were asked to detect English lexical borrowings (or anglicisms) from a collection of Spanish journalistic texts. Five teams submitted their solutions for the test phase. Proposed systems included LLMs, deep learning models, Transformer-based models and rule-based systems. The results range from F1 scores of 0.17 to 0.99, which showcases the variability in performance different systems can have for this task.
Abstract:Predicting which patients are more likely to be readmitted to a hospital within 30 days after discharge is a valuable piece of information in clinical decision-making. Building a successful readmission risk classifier based on the content of Electronic Health Records (EHRs) has proved, however, to be a challenging task. Previously explored features include mainly structured information, such as sociodemographic data, comorbidity codes and physiological variables. In this paper we assess incorporating additional clinically interpretable NLP-based features such as topic extraction and clinical sentiment analysis to predict early readmission risk in psychiatry patients.