Abstract:The introduction of the AI Act in the European Union presents the AI research and practice community with a set of new challenges related to compliance. While it is certain that AI practitioners will require additional guidance and tools to meet these requirements, previous research on toolkits that aim to translate the theory of AI ethics into development and deployment practice suggests that such resources suffer from multiple limitations. These limitations stem, in part, from the fact that the toolkits are either produced by industry-based teams or by academics whose work tends to be abstract and divorced from the realities of industry. In this paper, we discuss the challenge of developing an AI ethics toolkit for practitioners that helps them comply with new AI-focused regulation, but that also moves beyond mere compliance to consider broader socio-ethical questions throughout development and deployment. The toolkit was created through a cross-sectoral collaboration between an academic team based in the UK and an industry team in Italy. We outline the background and rationale for creating a pro-justice AI Act compliance toolkit, detail the process undertaken to develop it, and describe the collaboration and negotiation efforts that shaped its creation. We aim for the described process to serve as a blueprint for other teams navigating the challenges of academia-industry partnerships and aspiring to produce usable and meaningful AI ethics resources.
Abstract:Ensuring fairness in transaction fraud detection models is vital due to the potential harms and legal implications of biased decision-making. Despite extensive research on algorithmic fairness, there is a notable gap in the study of bias in fraud detection models, mainly due to the field's unique challenges. These challenges include the need for fairness metrics that account for fraud data's imbalanced nature and the tradeoff between fraud protection and service quality. To address this gap, we present a comprehensive fairness evaluation of transaction fraud models using public synthetic datasets, marking the first algorithmic bias audit in this domain. Our findings reveal three critical insights: (1) Certain fairness metrics expose significant bias only after normalization, highlighting the impact of class imbalance. (2) Bias is significant in both service quality-related parity metrics and fraud protection-related parity metrics. (3) The fairness through unawareness approach, which involved removing sensitive attributes such as gender, does not improve bias mitigation within these datasets, likely due to the presence of correlated proxies. We also discuss socio-technical fairness-related challenges in transaction fraud models. These insights underscore the need for a nuanced approach to fairness in fraud detection, balancing protection and service quality, and moving beyond simple bias mitigation strategies. Future work must focus on refining fairness metrics and developing methods tailored to the unique complexities of the transaction fraud domain.