Abstract:Brains learn to represent information from a large set of stimuli, typically by weak supervision. Unsupervised learning is therefore a natural approach for exploring the design of biological neural networks and their computations. Accordingly, redundancy reduction has been suggested as a prominent design principle of neural encoding, but its ``mechanistic'' biological implementation is unclear. Analogously, unsupervised training of artificial neural networks yields internal representations that allow for accurate stimulus classification or decoding, but typically rely on biologically-implausible implementations. We suggest that interactions between parallel subnetworks in the brain may underlie such learning: we present a model of representation learning by ensembles of neural networks, where each network learns to encode stimuli into an abstract representation space by cross-supervising interactions with other networks, for inputs they receive simultaneously or in close temporal proximity. Aiming for biological plausibility, each network has a small ``receptive field'', thus receiving a fixed part of the external input, and the networks do not share weights. We find that for different types of network architectures, and for both visual or neuronal stimuli, these cross-supervising networks learn semantic representations that are easily decodable and that decoding accuracy is comparable to supervised networks -- both at the level of single networks and the ensemble. We further show that performance is optimal for small receptive fields, and that sparse connectivity between networks is nearly as accurate as all-to-all interactions, with far fewer computations. We thus suggest a sparsely interacting collective of cross-supervising networks as an algorithmic framework for representational learning and collective computation in the brain.
Abstract:Combining the predictions of collections of neural networks often outperforms the best single network. Such ensembles are typically trained independently, and their superior `wisdom of the crowd' originates from the differences between networks. Collective foraging and decision making in socially interacting animal groups is often improved or even optimal thanks to local information sharing between conspecifics. We therefore present a model for co-learning by ensembles of interacting neural networks that aim to maximize their own performance but also their functional relations to other networks. We show that ensembles of interacting networks outperform independent ones, and that optimal ensemble performance is reached when the coupling between networks increases diversity and degrades the performance of individual networks. Thus, even without a global goal for the ensemble, optimal collective behavior emerges from local interactions between networks. We show the scaling of optimal coupling strength with ensemble size, and that networks in these ensembles specialize functionally and become more `confident' in their assessments. Moreover, optimal co-learning networks differ structurally, relying on sparser activity, a wider range of synaptic weights, and higher firing rates - compared to independently trained networks. Finally, we explore interactions-based co-learning as a framework for expanding and boosting ensembles.