Abstract:Image segmentation is a powerful computer vision technique for scene understanding. However, real-world deployment is stymied by the need for high-quality, meticulously labeled datasets. Synthetic data provides high-quality labels while reducing the need for manual data collection and annotation. However, deep neural networks trained on synthetic data often face the Syn2Real problem, leading to poor performance in real-world deployments. To mitigate the aforementioned gap in image segmentation, we propose RAFT, a novel framework for adapting image segmentation models using minimal labeled real-world data through data and feature augmentations, as well as active learning. To validate RAFT, we perform experiments on the synthetic-to-real "SYNTHIA->Cityscapes" and "GTAV->Cityscapes" benchmarks. We managed to surpass the previous state of the art, HALO. SYNTHIA->Cityscapes experiences an improvement in mIoU* upon domain adaptation of 2.1%/79.9%, and GTAV->Cityscapes experiences a 0.4%/78.2% improvement in mIoU. Furthermore, we test our approach on the real-to-real benchmark of "Cityscapes->ACDC", and again surpass HALO, with a gain in mIoU upon adaptation of 1.3%/73.2%. Finally, we examine the effect of the allocated annotation budget and various components of RAFT upon the final transfer mIoU.
Abstract:Demand for efficient onboard object detection is increasing due to its key role in autonomous navigation. However, deploying object detection models such as YOLO on resource constrained edge devices is challenging due to the high computational requirements of such models. In this paper, an compressed object detection model named Squeezed Edge YOLO is examined. This model is compressed and optimized to kilobytes of parameters in order to fit onboard such edge devices. To evaluate Squeezed Edge YOLO, two use cases - human and shape detection - are used to show the model accuracy and performance. Moreover, the model is deployed onboard a GAP8 processor with 8 RISC-V cores and an NVIDIA Jetson Nano with 4GB of memory. Experimental results show Squeezed Edge YOLO model size is optimized by a factor of 8x which leads to 76% improvements in energy efficiency and 3.3x faster throughout.